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Introduction: 

Number theory, also known as higher arithmetic is a branch of mathematics 
concerned with the properties of integers, rational numbers, irrational numbers and 
real numbers. Sometimes the discipline is considered to include the imaginary and 
complex numbers as well. 

Formally, numbers are represented in terms of sets; there are various schemes 
for doing this. However, there are other ways to represent numbers. As angles, as points 
on a line, as on a plane or as points in space. The integers and rational numbers can be 
symbolized and completely defined by numerals. The system of numeration commonly 
used today was developed from systems used in Arab texts, although some scholars 
believe they were first used in India. The so-called Arabic numerals are 
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 

Number theory is one of the oldest branches of pure mathematics and one of the 
largest of course; it concerns questions about numbers, usually meaning whole numbers 
or rational numbers. Elementry number theory involves divisibility among integers… 
the division “algorithm”, the Euclidean algorithm, elementary properties of primes, 
congruences, including Fermat’s Little theorem and Euler’s theorem extending it. But 
the term “elementary” is usually used in this setting only to mean that no advanced 
tools from other areas are used… not that the results themselves are simple. Indeed, a 
course in “elementry” number theory usually includes classic and elegant results such 
as Quadratic Reciprocity; counting results using the Mobius Inversion Formula; and 
even the prime number theorem, asserting the approximate density of primes among 
the integers, which has difficult but “elementry” proofs. In such chapter we shall discuss 
the topic of representing positive integers as sum of squares of two or more integers.  
Some Basic Definitions and Sum of Two Squares: 
Integers: The numbers 0, 1, −1, 2, −2, 3, −3 … are called integers of which 1, 2, 3, … are 
called positive integers and −1, −2, −3, … are called negative integers. The collection of 
all integers is denoted by 𝑍.  Thus 𝑍 =  … , −3, −2, −1, 0, 1, 2, 3, …   
Natural Numbers: The numbers 1, 2, 3, … are called natural numbers. They are also 
called counting numbers. Since, they are used for counting objects. The collection of all 
natural numbers is denoted by 𝑁. Thus 𝑁 =   1, 2, 3, …   
Least Common Multiple: The integers 𝑎1, 𝑎2, … , 𝑎𝑛  all different from zero, have a 
common multiple ‘𝑏’ if 𝑎𝑖 𝑏  for 𝑖 = 1, 2, … , 𝑛. The least of the positive common multiples 
is called the least common multiple and is denoted by  𝑎1, 𝑎2, … , 𝑎𝑛  
Greatest Common Divisor: The integers ‘𝑎’ is a common divisor of ‘𝑏’ and ‘𝑐’ in case𝑎/𝑏 
and  𝑎/𝑐. Since there is only a finite number of divisors of any non-zero integer, there is 
only a finite number of common divisors of ‘𝑏’ and ‘𝑐’, except in the case 𝑏 = 𝑐 = 0. If at 
least one of ‘𝑏’ and ‘𝑐’ is not 0.The greatest among their common divisors is called 
greatest common divisor of ‘𝑏’ and ‘𝑐’ and is denoted by (𝑏, 𝑐). Similarly, We denote the 
greatest common divisor ‘𝑔’ of the integers 𝑏1, 𝑏2, … , 𝑏𝑛  not all zero by  𝑏1, 𝑏2, … , 𝑏𝑛  
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Relatively Prime: We say that ‘𝑎’ and ‘𝑏’ are relatively prime incase  𝑎, 𝑏 = 1, and that 
𝑎1, 𝑎2, … , 𝑎𝑛  are relatively prime incase  𝑎1, 𝑎2, … , 𝑎𝑛 = 1. We say that 𝑎1, 𝑎2, … , 𝑎𝑛  are 
relatively prime in pairs in case  𝑎𝑖 , 𝑎𝑗  = 1 for all 𝑖 = 1, 2, 3, … , 𝑛 with 𝑖 ≠ 𝑗. 

Congruence: If an integer ‘𝑚’, not zero, divides the difference 𝑎 − 𝑏, we say that ‘𝑎’ is 
congruent to ‘𝑏’ modulo ‘𝑚’ and write 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) 
Division Algorithm: Given any integers ‘𝑎’ and ‘𝑏’ with 𝑎 ≠ 0,there exist unique 
integers ‘𝑞’ and ‘𝑟’ such that 𝑏 = 𝑞𝑎 + 𝑟, 0 ≤ 𝑟 < 𝑎.If𝑎/𝑏, then ‘𝑟’ satisfies the stronger 
inequalities 0 < 𝑟 < 𝑎. 
Prime Number: An integer 𝑃 > 1 is called a prime number (or) a prime in case there is 
no divisor ‘𝑑’ of ‘𝑝’ satisfying 1 < 𝑑 < 𝑝.If an integer 𝑎 > 1 is not a prime. It is called a 
composite number.   
Lattice Points: The co-ordinates of the points are an integer is called lattice points. 
Sum of Two Squares: 
 We begin with the question of representing a given integers as the sum of two 
squares. 
For Example 

13 = 22 + 32 
29 = 22 + 52 

313 = 122 + 132  
205 = 32 + 142 =  62 + 132  

Result 
                  𝑎2 + 𝑏2  𝑐2 + 𝑑2   =  𝑎𝑐 + 𝑏𝑑 2 +  𝑎𝑑 − 𝑏𝑐 2  =  𝑎𝑐 − 𝑏𝑑 2 +  𝑎𝑑 + 𝑏𝑐 2  
Theorem: 
 If 𝑁 divides 𝐴2 + 1 for some 𝐴, then 𝑁 is representable as the sum of two 
squares. 
Proof: 

 Let 
𝐴

𝑁
 be converted into a continued fraction and let 

𝑝𝑛

𝑞𝑛
 be the 𝑛𝑡ℎ  congruent to 

𝐴

𝑁
 

Such that   𝑞𝑛   ≤    𝑁 < 𝑞𝑛+1 … … … …… …  (1) 

   Then we have    
𝐴

𝑁
−

𝑝𝑛

𝑞𝑛
 <  

𝑝𝑛+1

𝑞𝑛+1
−

𝑝𝑛

𝑞𝑛
 =  

1

𝑞𝑛  𝑞𝑛+1
 

                                         This reduces to     𝐴𝑞𝑛 − 𝑁𝑝𝑛  <
𝑁

𝑞𝑛+1
 

                                         Hence from (1) (𝐴𝑞𝑛 − 𝑁𝑝𝑛)2 <
𝑁2

𝑞𝑛+1
2 < 𝑁 

 Also       𝑞𝑛  
2 ≤  𝑁 

                                             ∴   𝑞𝑛
2 + (𝐴𝑞𝑛 − 𝑁𝑝𝑛 )2 <  2𝑁 

But,       𝑞𝑛
2 + (𝐴𝑞𝑛 − 𝑁𝑝𝑛)2 =  𝑞𝑛

2(𝐴2 + 1) − 2𝑁𝐴𝑝𝑛𝑞𝑛 + 𝑁2  𝑝𝑛
2  

Which is a multiple of 𝑁, since 𝑁 divides𝐴2 + 1. Thus it is proved that  𝑞𝑛
2 +

(𝐴𝑞𝑛 − 𝑁𝑝𝑛)2is a multiple of 𝑁 less than 2𝑁. This implies,    𝑞𝑛
2 + (𝐴𝑞𝑛 − 𝑁𝑝𝑛)2  =  𝑁 

Hence the theorem is proved. 

Result: Let 𝑁 divides 𝐴2 + 1 for some 𝐴, and let 
𝑝𝑛

𝑞𝑛
 be a continued fraction convergent of 

𝐴

𝑁
 such that  𝑞𝑛   ≤    𝑁 < 𝑞𝑛+1 Then 𝑁 =   𝑞𝑛

2 +    𝑁 −  𝑞𝑛
2 

2
 

Theorem: (Euler Theorem) 
 If an integer 𝑁 can be represented as the sum of two squares in two different 
ways, then 𝑁 is complete. 
Proof: 
 Without loss of generality, we assume that 𝑁 is an odd integer. 

Let 𝑁 =  𝑥2 + 𝑦2 =  𝑢2 + 𝑣2 … …… … … … (1) 
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Obviously one of 𝑥 & 𝑦 and one of 𝑢 & 𝑣 is odd and the other even. We assume 𝑥 & 𝑢 are 
odd and 𝑦 & 𝑣 are even. … … … … … …… (2) 
From (1) we obtain 𝑥2 − 𝑢2 =  𝑣2 − 𝑦2  
Hence, (𝑥 − 𝑢)(𝑥 + 𝑢)  =  (𝑣 − 𝑦)(𝑣 + 𝑦) …… … … … …  (3) 
Let (𝑥 − 𝑢, 𝑣 − 𝑦)  =  𝑑. Since 𝑥 − 𝑢 and 𝑣 − 𝑦are both even integers it follows that 

‘𝑑’is even. … …… … … …  (4) 
Let 𝑥 − 𝑢 = 𝑎𝑑 and 𝑣 − 𝑦 = 𝑏𝑑 … … … …… …  (5) 
For some integers ‘𝑎’ and ‘𝑏’. Then (𝑎, 𝑏)  =  1 
From  3  and (5) we obtain 𝑎(𝑥 + 𝑢)  =  𝑏(𝑣 + 𝑦) … … … … … …  (6) 
This implies 𝑏 𝑥 + 𝑢  and 𝑎 𝑣 + 𝑦.  
Hence 𝑥 + 𝑢 =  𝑏𝑡 for some integer ‘𝑡’ … … … …… …  (7) 
Then from (6) we get 𝑣 + 𝑦 =  𝑎𝑡 … … … … … …  (8) 
It follows, since (𝑎, 𝑏)  =  1, that ‘𝑡’ is the G.C.D of 𝑥 + 𝑢 and 𝑣 + 𝑦 which are both even 
integers. ∴ ‘𝑡’is even… … … …… …  (9) 
Thus finally we have 4𝑁 =  2𝑥2 + 2𝑦2+2𝑢2+2𝑣2  =  (𝑥 − 𝑢)2 + (𝑥 + 𝑢)2+(𝑣 −
𝑦)2+(𝑣+𝑦)2= 𝑎2𝑑2+𝑏2𝑡2+𝑏2𝑑2+𝑎2𝑡2   = (𝑎2+𝑏2)( 𝑑2+𝑡2) 
                Thus 𝑁 =    𝑑 2  2 +  𝑡 2  2  𝑎2 + 𝑏2  
The theorem is therefore established since ‘𝑑’ and ‘𝑡’ are even integers. 
Theorem: 
 Every prime ‘𝑝’ of the form 4𝑘 + 1 can be represented uniquely as the sum of two 
squares. 
Proof: 
 Since‘𝑝’is of the form 4𝑘 + 1, −1 is a quadratic residue of ‘𝑝’ 
Hence there exists an integer 𝐴 such that 𝐴2 ≡  −1  𝑚𝑜𝑑 𝑝  
In other words this means ‘𝑝’ divides 𝐴2 + 1for some 𝐴. It follows by theorem (1.1) that 
‘𝑝’is representable. Now if there were two or more different representations of ‘𝑝’,then 
by theorem. ∴ ‘𝑝’ would be a composite number which is absurd. Hence the 
representation is unique. 
Theorem: 
 Let 𝑁 be canonically decomposed. Then 𝑁 is representable if and only if every 
prime of the form 4𝑞 + 3 occurring in the decomposition has an even exponent. 
Proof: 
Necessary Part: 
 Given: Every prime of the form 4𝑞 + 3 occurring in the decomposition has an 
even exponent. To prove that 𝑁 is representable. 𝑁 =  𝑛2𝑝1𝑝2 …… … 𝑝𝑘  where‘𝑛’ is some 
integer, and 𝑝1, 𝑝2, … … … 𝑝𝑘  are all distinct primes of the form 4𝑞 + 1 (or) 2. Now we 
know that 𝑛2 , 𝑝1, 𝑝2, … … … 𝑝𝑘are all representable integers. Hence their product which 
is 𝑁 is also representable. 
Sufficient Part: 
 Given: 𝑁  is representable. To prove that: Every prime of the form  4𝑞 + 3 
occurring in the decomposition has an even exponent.  𝑁 =  𝑥2 + 𝑦2 for some integers 
‘𝑥’ and ‘𝑦’. If  (𝑥, 𝑦)  =  𝑑 and  𝑥 =  𝑥1𝑑, 𝑦 = 𝑦1𝑑 then  
𝑁 =  𝑑2 𝑥1

2 + 𝑦1
2 … … …… … …  (1)  

Such that (𝑥1, 𝑦1) = 1. Let ‘𝑝’ be any prime divisor of 𝑥1
2 + 𝑦1

2. This implies  𝑥1
2 + 𝑦1

2  ≡
0   𝑚𝑜𝑑 𝑝 … … … … … … … (2) 
Since 𝑥1 is prime to 𝑦1, ‘𝑝’ is relatively prime to 𝑦1 (and 𝑥1 also) It follows that there 
exists an integer ‘𝑎’ satisfying the congruence  
                    𝑎𝑦1  ≡ 1   𝑚𝑜𝑑 𝑝 …… … … … …  (3) 
Such that (𝑎, 𝑝) = 1. Also multiplying (2) by 𝑎2 we get  𝑎𝑥1 2 +  𝑎𝑦1 2  ≡ 0   𝑚𝑜𝑑 𝑝 . 
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                      From (3) this reduces to  𝑎𝑥1 2 + 1 ≡ 0   𝑚𝑜𝑑 𝑝 . 
Thus −1 is a quadratic residue of ‘𝑝’.  ∴   ‘𝑝’ is either 2 or a prime of the form 4𝑘 + 1. 
So, 𝑥1

2 + 𝑦1
2 is the product of such primes only. But, 𝑁 =  𝑑2 𝑥1

2 + 𝑦1
2  

 Hence every prime of the form  4𝑞 + 3 occurring in the decomposition of 𝑁has 
an even exponent. 
Theorem: (Euler Theorem) 
 Let ′𝑝′  be a prime of the form 4𝑞 + 1.  Then there exist two integers  𝑥  and ℎ 

such that 𝑥2  +  1 =  ℎ𝑝 where 𝑜 <  𝑥 <
𝑃

2
 and 𝑜 <  ℎ < 𝑝. 

Proof: 
′𝑝′ is of the form4𝑞 + 1. Hence−1 is a quadratic residue of ′𝑝′.  But we know that the 𝑞𝑟𝑠  
(quadratic residues) of ′𝑝′are 

12 , 22, … … … …   
𝑝−1

2
 

2

… …… … … …  (1)  

So, −1 is congruent to one of these integers say 𝑥2   This means  𝑥2 ≡ −1 (𝑚𝑜𝑑 𝑝)  where 

𝑜 <  𝑥 <
𝑝

2
 … … …… … … (2) 

∴      𝑥2 +  1 =  ℎ𝑝 … … … … … … (3)  for some ℎ. Also, ℎ𝑝 =  𝑥2 + 1 <
𝑝2

4
+ 1 < 𝑝2 

Hence 𝑂 <  ℎ <  𝑝   … … … … …… (4) 
(3), (2) and (4) above prove the theorem. 
Theorem: 
 Every prime 𝑝 of the form 4𝑞 + 1 is representable as the sum of two squares. 
Proof: 
 By the well known theorem that there exists a multiple of ′𝑝′ say ′ℎ𝑝′ which is 
representable such that 𝑜 < ℎ < 𝑝. If ℎ = 1 then there is nothing more to prove. We 
therefore assume that ℎ > 1. Fermat’s method of descent consists in proving from this 
assumption that a smaller multiple of ′𝑝′ than ′ℎ𝑝′ is also representable. Let 
ℎ𝑝 = 𝑥2 + 𝑦2, 𝑜 < ℎ < 𝑝 for some integers ′𝑥′ and ′𝑦′ … …… … … …  (1) 
                                 This implies 𝑥2 + 𝑦2 ≡  𝑜   𝑚𝑜𝑑 ℎ … … … … ……  (2) 
If ′𝑟′ and ′𝑠′ are the minimal residues of ′𝑥′ and ′𝑦′ respectively (𝑚𝑜𝑑 ℎ) then we have 
𝑟2 + 𝑠2 ≡ 𝑜  𝑚𝑜𝑑 ℎ … …… … … …  (3)               

Such that  𝑟 ≤
ℎ

2
,  𝑠 ≤

ℎ

2
 It should be noted here that 𝑟 and 𝑠 cannot both be zero at the 

same time, otherwise it would imply that ℎ 𝑥  and ℎ 𝑦   so that ℎ
2

𝑥2 + 𝑦2  This means 

that ′ℎ′ divides ′𝑝′ which is impossible. From (3) we have  
𝑟2 + 𝑠2 =  ℎ1ℎ … … … … … …  (4)           

It follows that ℎ1ℎ ≤  ℎ
2   

2

+  ℎ
2   

2

< ℎ2 . Hence 𝑜 < ℎ1 < ℎ … … … …… …  (5)           

From (1) and (2) we obtain ℎ1ℎ2𝑝 =  𝑟2 + 𝑠2 (𝑥2 + 𝑦2) 
                                                        = (𝑟𝑥 + 𝑠𝑦)2 + (𝑟𝑦 − 𝑠𝑥)2 … … … … … …  (6) 
But, 
                                              𝑟𝑥 ≡  𝑥2  (𝑚𝑜𝑑 ℎ) 
                                             𝑠𝑦 ≡  𝑦2 (𝑚𝑜𝑑 ℎ) 
                                             𝑟𝑦 ≡  𝑥𝑦 (𝑚𝑜𝑑 ℎ) 
                                             𝑠𝑥 ≡  𝑥𝑦 (𝑚𝑜𝑑 ℎ) 
So, 𝑟𝑥 + 𝑠𝑦 ≡  𝑥2 + 𝑦2 ≡ 0  𝑚𝑜𝑑 ℎ  
Which implies 𝑟𝑥 + 𝑠𝑦 =  𝑥1ℎ … …… … … …  (7) for some 𝑥1 Similarly 𝑟𝑦 − 𝑠𝑥 ≡
0  𝑚𝑜𝑑 ℎ   (or) 𝑟𝑦 − 𝑠𝑥 =  𝑦1ℎ … … … … … …  (8)  for some ℎ1 
Thus (6) is transformed to ℎ1ℎ

2ℎ = ℎ1
2ℎ2 + ℎ1

2ℎ2 (ie)  ℎ1ℎ = ℎ1
2 + ℎ1

2, 0 < ℎ1 < ℎ. 
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So it is proved that a multiple of ‘ℎ’ smaller than ‘ℎℎ’ is representable.                              
Applying the same process as above to ℎ1ℎ we get a still smaller multiple of ‘ℎ’, say ℎ2ℎ, 
which is representable. Obviously then if we continue the process further we shall 
finally arrive at result that ‘ℎ’ is representable. 
Theorem: 
 Let ‘ℎ’ be an odd prime, and let (ℎ, ℎ) = 1. Then there exist at least one pair of 

non zero integers ‘ℎ’ and ‘ℎ’ each numerically less than 𝑝  such that 𝑢𝑎 ≡ 𝑣 (𝑚𝑜𝑑 𝑝) 

Proof: 

Let [ 𝑝  ] = ℎ so that ℎ <  𝑝 < ℎ + 1.  Consider the integers of the set ‘𝑠’ defined by 

                           𝑠 =   𝑠𝑎 + 𝑡,   𝑠 = 1, 2, … … ℎ + 1;   𝑡 = 1, 2, … … ℎ + 1  
The number of integers in ‘𝑠’ is  ℎ + 1 2 which is greater than ‘𝑝’ there are at least two 
integers in ‘𝑠’ which are congruent (𝑚𝑜𝑑 𝑝). Let these be 𝑠1𝑎 + 𝑡1 and 𝑠2𝑎 + 𝑡2 where 
either 𝑠1 is different from 𝑠2 (or) 𝑡1 is different from 𝑡2. 
So, we have 𝑠1𝑎 + 𝑡1  ≡  𝑠2𝑎 + 𝑡2  𝑚𝑜𝑑 𝑝 … … … …… …  (1) 
Let us put 𝑠2 − 𝑠1 = 𝑢 and 𝑡1 − 𝑡2 = 𝑣. Then                             𝑢𝑎 ≡  𝑣  𝑚𝑜𝑑 𝑝 … (2) 
                            Now if 𝑠1 ≠ 𝑠2 then 𝑡1 ≠ 𝑡2 from (1) above 
Converse Part: 
If 𝑡1 ≠ 𝑡2 then 𝑠1 ≠ 𝑠2So in either case ‘𝑢’ and ‘𝑣’ are non zero integers. Moreover 
𝑠1, 𝑠2, 𝑡1, 𝑡2 are all positive integers which do not exceed ℎ + 1. 

Hence,  𝑢  ≤ ℎ <   𝑝  … … … …… …  (3) 

                 𝑣  ≤ ℎ <   𝑝  … … … …… …  (4) 

                             (2), (3) and (4) above establish the theorem. 
Theorem: 
 Every prime of the form 4𝑞 + 1 is representable as the sum of two squares. 
Proof: 
 Since ‘𝑝’ is of the form 4𝑞 + 1, −1 is a quadratic residue of ‘𝑝’. Hence there exist is 
an integer ‘𝑎’ which satisfies the congruence. 𝑎2 + 1 ≡ 0  𝑚𝑜𝑑 𝑝 … (1) Where 
(𝑎, 𝑝)  =  1. By the theorem there exist two integers ‘𝑢’ and ‘𝑣’ each numerically less 

than  𝑝  such that 𝑢𝑎 ≡  𝑣  𝑚𝑜𝑑 𝑝  (or) 𝑢2𝑎2  ≡  𝑣2  𝑚𝑜𝑑 𝑝  

But from (1) we have  𝑢2𝑎2 + 𝑢2  ≡  0  𝑚𝑜𝑑 𝑝  
                          ∴       𝑢2 + 𝑣2  ≡  0  𝑚𝑜𝑑 𝑝  
This implies 𝑢2 + 𝑣2 = 𝑘𝑝 for some positive integer ‘𝑘’. We know however, that 

𝑢2 + 𝑣2 < 2𝑝 because  𝑢 <  𝑝  and   𝑣 <  𝑝   

                           It follows that 𝑢2 + 𝑣2 = 𝑝. 
Theorem: 
 Let the canonical decomposition of 𝑁 be 𝑁 =  2ℎ  𝑝1

𝑎1  𝑝2
𝑎2 … … 𝑝𝑘

𝑎𝑘  Then 𝑁 is 

representable as the sum of two relatively prime squares if and only if ℎ = 0 (or) 1 and 
are primes of the form 4𝑞 + 1. 
Proof: 
Necessary Part: 
 Given: ℎ = 0 (or) 1 and 𝑝1, 𝑝2, … … 𝑝𝑘  are primes of the form 4𝑞 + 1. To prove 
that: 𝑁 is representable as the sum of two relatively prime squares. We know that, −1 is 
a quadratic residue of 2, 𝑝1, 𝑝2, … … 𝑝𝑘  By the well known theorem, “Let 𝑚 =
2ℎ  𝑝1

𝑎1  𝑝2
𝑎2 … … 𝑝𝑘

𝑎𝑘 . Then ‘𝑎’ is a quadratic residue of ‘𝑚’ if and only if it is a quadratic 

residue of 2ℎ , 𝑝1, 𝑝2, … … 𝑝𝑘” That −1 is a quadratic residue of 𝑁. Therefore there exists 
an integer ‘𝑏’, such that 𝑏2 + 1 is divisible by 𝑁. This implies that 𝑁 is representable as 
the sum of two relatively prime squares. 
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Sufficient Part: 
 Given: 𝑁 is representable as the sum of two relatively prime squares. To prove 
that: ℎ = 0 (or) 1 and 𝑝1, 𝑝2, … … 𝑝𝑘  are primes of the form 4𝑞 + 1. Let 𝑁 =  𝑥2 + 𝑦2,
 𝑥, 𝑦 =  1. Then there exists an integer ‘𝑏’ such that 𝑁 divides 𝑏2 + 1. So −1 is a 
quadratic residue of 𝑁. By the well known theorem,  “Let 𝑚 = 2ℎ  𝑝1

𝑎1  𝑝2
𝑎2 … … 𝑝𝑘

𝑎𝑘 . Then 

‘𝑎’ is a quadratic residue of ‘𝑚’ if and only if it is a quadratic residue of 2ℎ , 𝑝1, 𝑝2, …… 𝑝𝑘” 
That −1 is a quadratic residue of 2ℎ , 𝑝1, 𝑝2, … … 𝑝𝑘  This implies ℎ = 0 (or) 1 and 
𝑝1, 𝑝2, …… 𝑝𝑘  are primes of the form 4𝑞 + 1. Hence the proof. 
Gauss Theorem and Sum of Three Squares: 
Theorem: 
 𝑅(𝑛)  = number of lattice points in the interior and on the boundary of the circle 
𝑥2 + 𝑦2 = 𝑛 [excluding the lattice points (0,0)] 
Proof 
                            𝑅 𝑛 = 𝑟 1 + 𝑟 2 + ⋯ + 𝑟 𝑛  
Which is equal to the number of lattice points on the boundaries of the circles  
𝑥2 + 𝑦2 = 1, 𝑥2 + 𝑦2 = 2, …… … , 𝑥2 + 𝑦2 = 𝑛. Hence the proof. 
Theorem: (Gauss Theorem) 

𝑅 𝑛 = 𝛱𝑛 + 𝑜  𝑛  

Proof: 

 In the figure, ‘𝐴’ is the circle 𝑥2 + 𝑦2 = 𝑛 of radius  𝑛. 

 
𝑅(𝑛) + 1 is equal to the number of lattice points on and within the circle ‘𝐴’ including 
the origin. We attach to each of these 𝑅(𝑛) + 1 lattice points a lattice square so that 
lattice points lies at the left hand bottom corner of the square. Then obviously the area 
of all these squares (shown shaded in the figure) is numerically equal to 𝑅(𝑛) + 1. Also 

this area is less than area of the circle ‘𝐵’ of radius  𝑛 +  2 and greater than the area of 

the circle ‘𝐶’ of radius  𝑛 −  2.  

Hence 𝛱  𝑛 −  2 
2

< 𝑅 𝑛 + 1 < 𝛱  𝑛 +  2 
2
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(or)    𝛱  𝑛 −  2 
2

− 1 < 𝑅 𝑛 < 𝛱  𝑛 +  2 
2

− 1 

But,   𝛱  𝑛 +  2 
2

− 1 = 𝛱𝑛 + (2 2𝛱 𝑛 + 2𝛱 − 1)  = 𝛱𝑛 + 𝑜  𝑛  

Similarly, 𝛱  𝑛 −  2 
2

− 1 = 𝛱𝑛 −  2 2𝛱 𝑛 − 2𝛱 + 1   = 𝛱𝑛 + 𝑜  𝑛  

                              It follows that 𝑅 𝑛 = 𝛱𝑛 + 𝑜  𝑛  

Sum of Three Squares: 
 We shall first consider the representation of an integer as the sum of three 
squares. We have seen in the last chapter that not all integers can be represented as the 
sum of two squares. It is therefore natural to inquire whether all integers are 
representable as the sum of three squares. 
For example, 

4 =  22 + 02 + 02 
5 =  22 + 12 + 02 
6 =  22 + 12 + 12 

But the integer 7 cannot be so represented. It can only be written as the sum of four 
squares. 

7 =  22 + 12 + 12 + 12 
We shall now prove that there are infinitely many integers for which the representation 
as the sum of three squares is not possible. 
Theorem: 
 If 𝑁 is of the form 8𝑞 + 7 then 𝑁 is not representable as the sum of three squares. 
Proof: 
 Let us assume that 𝑁 is the sum of three squares. 𝑁 = 𝑥2 + 𝑦2 + 𝑧2 for some 
integers 𝑥, 𝑦, 𝑧. Then it follows that  
                              𝑥2 + 𝑦2 + 𝑧2  ≡ 7  𝑚𝑜𝑑 8 … … … … ……  (1) 
Now 𝑥2 ≡ 1  𝑚𝑜𝑑 8  if ‘𝑥’ odd. 𝑥2 ≡ 0 (or) 4  𝑚𝑜𝑑 8  if ‘𝑥’ even. 𝑦2 and 𝑧2 also be have 
similarly. Hence 𝑥2 + 𝑦2 + 𝑧2 can be congruent (𝑚𝑜𝑑 8) to one of the integers 
0, 1, 2, 3, 4, 5, 6, and not to 7. Since this contradicts (1) above 𝑁 cannot br represented as 
the sum of three squares. 
Theorem: 
 Let 𝑁 = 4ℎ 8𝑞 + 7  for some ‘ℎ’ and ’𝑞’. Then 𝑁 cannot be represented as the 
sum of three squares. 
Proof: 
Case (i)  Let ℎ = 0 
Then 𝑁 = 8𝑞 + 7 an “By the theorem (2.3)” 𝑁 is not the sum of three squares. 
Case (ii)   Let ℎ ≥ 1 
Then if possible let 𝑁 = 𝑥2 + 𝑦2 + 𝑧2 … … … … ……  (1) for some integers 𝑥, 𝑦, 𝑧. 
                                Hence,𝑥2 + 𝑦2 + 𝑧2  ≡ 0  𝑚𝑜𝑑 4 … …… … … …  (2) 
Now, 𝑥2 ≡ 1  𝑚𝑜𝑑 4  if ‘𝑥’ odd.  𝑥2 ≡ 0  𝑚𝑜𝑑 4  if ‘𝑥’ even. It follows that from (2) that 
𝑥, 𝑦, 𝑧 are all even integers. 

∴  From (1) we have  𝑥 2  
2

+  
𝑦

2  
2

+  𝑧 2  
2

=  𝑁 4   = 4ℎ−1 8𝑞 + 7  

It is thus proved that if 4ℎ 8𝑞 + 7  is the sum of three squares then 4ℎ−1 8𝑞 + 7  is also 
so representable. Repeating the argument in succession we see that, 4ℎ−2 8𝑞 +
7, 4ℎ−38𝑞+7, ………,408𝑞+7 are also representable. But we know “by that 408𝑞+7  is 
not representable as the sum of three squares. Thus there is contradiction. It follows 
that 𝑁 is not the sum of three squares. Conversely, It is possible to prove that if a 
number 𝑁 cannot be represented as the sum of three squares then 𝑁 is of the form 
4ℎ 8𝑞 + 7 . 
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Sum of Four Squares: 
 We proved in the previous chapter that it is not possible to represent all 
numbers as the sum of two squares. The following algebraic identity was first 
discovered by Euler and it is an essential step towards the solution of the problem. 
Result: 

 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2  𝑦1
2 + 𝑦2

2 + 𝑦3
2 + 𝑦4

2 = 𝑢1
2 + 𝑢2

2 + 𝑢3
2 + 𝑢4

2 
Where    𝑢1 = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 + 𝑥4𝑦4 

𝑢2 = 𝑥1𝑦2 − 𝑥2𝑦1 + 𝑥3𝑦4 − 𝑥4𝑦3 
𝑢3 = 𝑥1𝑦3 − 𝑥3𝑦1 + 𝑥4𝑦2 − 𝑥2𝑦4 
𝑢4 = 𝑥1𝑦4 − 𝑥4𝑦1 + 𝑥2𝑦3 + 𝑥3𝑦2 

Theorem: (Euler Theorem) 
 Let ‘𝑝’ be an odd prime. Then there exist integers 𝑥, 𝑦, ℎ such that 𝑥2 + 𝑦2 + 1 =

ℎ𝑝,  where 0 ≤ 𝑥 <
𝑝

2
, 0 ≤ 𝑦 <

𝑝

2
 and 0 < ℎ < 𝑝. 

Proof: 

Consider the following two sets of integers  𝑆1 =  0, 12, 22 , … … ,  
𝑝−1

2
 

2

   

𝑆2 =  −1, −1 − 12 , −1 − 22 , … … , −1 −  
𝑝−1

2
 

2

   

We know that, the integers 12, 22 , … … ,  
𝑝−1

2
 

2

are all incongruent (𝑚𝑜𝑑 𝑝). It follows 

that the integers of 𝑆1and the integers of 𝑆2 also are incongruent (𝑚𝑜𝑑 𝑝).                        
Now, the total number of integers in 𝑆1 ∪ 𝑆2 is 𝑝 + 1. Therefore there must be at least 
two integers in these 𝑝 + 1 numbers which are congruent to each other (𝑚𝑜𝑑 𝑝).                        
It then follows that at least one number of 𝑆1, say 𝑥2 , is congruent (𝑚𝑜𝑑 𝑝) to some 

number say −1 − 𝑦2 of 𝑆2 such that 0 ≤ 𝑥 <
𝑝

2
 and 0 ≤ 𝑦 <

𝑝

2
 Thus we have 

𝑥2 ≡ −1 − 𝑦2 (𝑚𝑜𝑑 𝑝) (or) 𝑥2 + 𝑦2 + 1 = ℎ𝑝 for some positive integer ‘ℎ’.                        

Further, ℎ =
1

𝑝
 𝑥2 + 𝑦2 + 1 <

1

𝑝
 

𝑝2

4
+

𝑝2

4
+ 1 < 𝑝. The theorem is therefore completely 

proved. 
Corollary: 
 Let ‘𝑝’ be an odd prime. Then there exists a multiple of ‘𝑝’ say 𝑝ℎ, 0 < ℎ <
𝑝 which is representable as the sum of four squares. 
Proof:  
 This is easy since by last theorem there exist integers 𝑥, 𝑦 and ℎ. Such that, 
𝑥2 + 𝑦2 + 12 + 02 = ℎ𝑝 where 0 < ℎ < 𝑝 
Theorem: 
 Let ′𝑝′ be any prime. If ℎ𝑝 is representable as the sum of four squares for some 

even integer ′ℎ′, then 1 2 ℎ𝑝 is also representable. 

Proof: 
 Let ℎ𝑝 = 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 … … … … … …  (1) 

Then there are five cases with regard to 𝑥1, 𝑥2, 𝑥3 and 𝑥4 which we have to                                                                  
consider (𝑖) They are all even. (𝑖𝑖) One is odd, and the other three even.  In this case 
(ℎ𝑝 = 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2) would be an odd integer contradicting the given condition. 

Therefore this case is not possible. (𝑖𝑖𝑖) Two of them say 𝑥1 and 𝑥2 are odd and the other 
two even. (𝑖𝑣) Three are odd and one even. This case is also not possible for the same 
reasons as in  𝑖𝑖  above.  (𝑣) All are odd. Thus cases  𝑖   𝑖𝑖𝑖  and  𝑣  are the only 

possible ones. In all these three cases it is easily seen that  
𝑥1±𝑥2

2
   and   

𝑥3±𝑥4

2
  are 

integers. The theorem then follows immediately since (1) can be written 
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1 2  ℎ𝑝 =  
𝑥1+𝑥2

2
 

2

+  
𝑥1−𝑥2

2
 

2

+  
𝑥3+𝑥4

2
 

2

+  
𝑥3−𝑥4

2
 

2

 

Theorem: 
 Let ‘𝑝’ be an odd prime. If ℎ𝑝 is representable as the sum of four squares for 
some odd integer ℎ > 1 then there exists a smaller multiple of ‘𝑝’ than ℎ𝑝 which is also 
representable. 
Proof: 
 Let ℎ𝑝 = 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 … … … … … …  (1)  for some integers 𝑥1, 𝑥2, 𝑥3  and 𝑥4 

Then obviously 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 ≡ 0  𝑚𝑜𝑑 ℎ … … … … … … (2) 
Let the minimal residues of 𝑥1, 𝑥2, 𝑥3 , 𝑥4 (𝑚𝑜𝑑 ℎ) be 𝑟1, 𝑟2, 𝑟3, 𝑟4 respectively. This implies 

 𝑟1 <
ℎ

2
,  𝑟2 <

ℎ

2
,  𝑟3 <

ℎ

2
,  𝑟4 <

ℎ

2
 

Since ‘ℎ’ is odd, and  𝑟1
2 + 𝑟2

2 + 𝑟3
2 + 𝑟4

2 ≡ 0  𝑚𝑜𝑑 ℎ … … … (3) 
It should be observed here that 𝑟1, 𝑟2, 𝑟3, 𝑟4 cannot all be simultaneously zero, otherwise 
it follows that ‘ℎ’ divides 𝑥1, 𝑥2 , 𝑥3, 𝑥4  so that ℎ2 divides 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2  (or) that ℎ2 

divides ℎ𝑝 which is impossible. From (3) we then have 𝑟1
2 + 𝑟2

2 + 𝑟3
2 + 𝑟4

2 =
ℎ1ℎ … … … … … … (4) for some integer ℎ1 

It follows that ℎ1ℎ <  ℎ
2  

2

+  ℎ
2  

2

+  ℎ
2  

2

+  ℎ
2  

2

= ℎ2  

So, ℎ1 < ℎ … … …… … …  (5) 
Moreover we obtain from (1) and (4) ℎ1ℎ2𝑝 =   𝑟1

2 + 𝑟2
2 + 𝑟3

2 + 𝑟4
2  𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2  

                                  = 𝑢1
2 + 𝑢2

2 + 𝑢3
2 + 𝑢4

2  …… … … … …  (6) 
Where by the ”Euler Result” 
𝑢1 = 𝑥1𝑟1 + 𝑥2𝑟2 + 𝑥3𝑟3 + 𝑥4𝑟4  ≡ 𝑟1

2 + 𝑟2
2 + 𝑟3

2 + 𝑟4
2 (𝑚𝑜𝑑 ℎ)  ≡ 0 (𝑚𝑜𝑑 ℎ) 

 𝑢2 = 𝑥1𝑟2 − 𝑥2𝑟1 + 𝑥3𝑟4 − 𝑥4𝑟3 ≡ 𝑟1𝑟2 − 𝑟2𝑟1 + 𝑟3𝑟4 − 𝑟4𝑟3 (𝑚𝑜𝑑 ℎ) ≡ 0 (𝑚𝑜𝑑 ℎ) 
It can be proved in a similar manner that   𝑢3 ≡ 0 (𝑚𝑜𝑑 ℎ) &  𝑢4 ≡ 0 (𝑚𝑜𝑑 ℎ) 
So, we have 𝑢1 = 𝑠1ℎ, 𝑢2 = 𝑠2ℎ , 𝑢3 = 𝑠3ℎ and 𝑢4 = 𝑠4ℎ for some integers 𝑠1, 𝑠2, 𝑠3 and 𝑠4 
It follows from (6) that ℎ1ℎ2𝑝 = 𝑠1

2ℎ2 + 𝑠2
2ℎ2 + 𝑠3

2ℎ2 + 𝑠4
2ℎ2   = ℎ2 𝑠1

2 + 𝑠2
2 + 𝑠3

2 + 𝑠4
2   

Hence ℎ1𝑝 = 𝑠1
2 + 𝑠2

2 + 𝑠3
2 + 𝑠4

2  … … … … ……  (7) 
(7) and (5) prove the theorem. 
Theorem: 
 Every prime ‘𝑝’ is representable as the sum of four squares. 
Proof: 
(𝑖)  Let 𝑝 = 2 Then 2 = 12 + 12 + 02 + 02 So, 2 is representable. 
(𝑖𝑖) Let 𝑝 ≥ 3 Then by the corollary. We know that there exists a multiple of ‘𝑝’ which is 
the sum of four squares. It follows that there is a least such multiple. Let this be ℎ𝑝. If ‘ℎ’ 

is even then by the theorem (3.2) 
1

2
ℎ𝑝 is representable. This contradicts our assumption 

that ℎ𝑝 is the least multiple of ‘𝑝’ which is representable. Therefore ‘ℎ’ is odd.                         
If, now ‘ℎ’ is an odd integer >  1, then by the well known theorem, there exists a smaller 
multiple of ‘𝑝’ then ℎ𝑝 which is representable. This also contradicts our assumption. 
Hence ℎ = 1 and ‘𝑝’ is representable. 
Conclusion: 
 In this dissertation, we discussed about how an integer can be (or) cannot be 
represented as a sums of squares. Also, an introduction to number theory and some 
definitions are discussed. Basic concepts which are used in our dissertation are also 
discussed. Also, how a number can be (or) cannot be represented as a sum of two 
squares, sum of three squares and sum of four squares are discussed. These are all the 
field of current research in Number Theory. So this can be considered as a first step 
towards my research. 
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