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Abstract:   
Multistep processing is commonly used for nearest neighbor (NN) and similarity 

search in applications involving high-dimensional data and costly distance computations. 
Today, many such applications require a proof of result correctness. In this setting, clients 
issue NN queries to a server that maintains a database signed by a trusted authority. The 
server returns the NN set along with supplementary information that permits result 
verification using the data set signature. An adaptation of the multistep NN algorithm 
incurs prohibitive network overhead due to the transmission of false hits, i.e., records that 
are not in the NN set, but are nevertheless necessary for its verification. In order to 
alleviate this problem, this paper presents a novel technique that reduces the size of each 
false hit and generalizes solution for a distributed setting, where the database is 
horizontally partitioned over several servers.  
Index Terms:  Query authentication, multistep nearest neighbors, similarity search, 
False Hits & Horizontally partitioned 
1. Introduction: 

DB be a D-dimensional data set. Each record P ϵ DB can be thought of as a point 
in the space defined by the D attribute domains, and in the sequel i use the term record 
and point interchangeably. Given a point Q, a nearest neighbor (NN) query retrieves the 
record {P ϵ DB: DST(Q,P) ≤ DST(Q,Pꞌ) ˅ Pꞌ ϵ DB}, where DST(Q, P) denotes the distance 
between Q and P. Likewise, a kNN query returns the k closest points to Q. NN and kNN 
queries are common in similarity retrieval. Specifically, since similarity between 
records is inversely proportional to their distance, a kNN query returns the k most 
similar records to Q. The multistep framework has been proposed for NN and similarity 
retrieval in domains that entail high dimensional, expensive distance functions or a 
combination of both factors. In this paper, i focus on authenticated multistep NN search 
for applications that require a proof of result correctness. For instance, argues that the 
most cost-effective way for medical facilities to maintain radiology images is to 
outsource all image management tasks to specialized commercial providers. Clients 
issue similarity queries to a provider. The latter returns the result set and additional 
verification information, based on which the client establishes that the result is indeed 
correct, i.e., it contains exactly the records of DB that satisfy the query conditions, and 
that these records indeed originate from their legitimate data source. A similar situation 
occurs for data replication, i.e., when a data owner stores DB at several servers. Clients 
issue their queries to the server, but they wish to be assured that the result is the same 
as if the queries were sent to the original source of DB. In other cases, correctness is 
guaranteed by a trusted third party. For instance, notarization services have been 
proposed to safeguard against tampering in document databases. Authenticated query 
processing ensures the client that the received result complies with the validated DB. 
Initially, I study the problem assuming that the entire DB resides at a single server. Our 
first contribution is AMN, an adaptation of a multistep algorithm that is optimal in terms 
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of DST computations. AMN requires transmissions of false hits, i.e., records that are not 
in the result, but are nevertheless necessary for its verification. In addition to the 
network overhead, false hits impose a significant burden to the client, which has to 
verify them. The second contribution, C-AMN, alleviates this problem through an 
elaborate scheme that reduces the size of false hits. Finally, i consider a distributed 
setting, where the database is horizontally partitioned over several servers. Our third 
contribution, ID-AMN, incrementally retrieves data, gradually eliminating servers that 
cannot contribute results. 
2. Experimental: 
A. Multistep NN Framework:    

The multistep NN framework is motivated by applications that entail expensive 
distance computations. Specifically, let DST(Q, P) be the actual distance between a query 
Q and a data point P ϵ DB. The applicability of the multistep framework rests on the 
existence of a filter distance metric dst, which is cheap to evaluate and satisfies the 
lower bounding property, i.e., for every possible Q and P: dst(Q,P) ≤ DST(Q, P). Multistep 
NN search was introduced in [11]. Subsequently, Seidl and Kriegel [19] proposed the 
algorithm of Fig. 1, which is optimal in terms of DST computations. In order to provide a 
concrete context, our explanation focuses on road networks [18], where DST and dst 
refer to the network and Euclidean distance, respectively. Compared to Euclidean 
distance (dst), network distance (DST) computations are significantly more expensive 
because they entail shortest path algorithms in large graphs. Moreover, the Euclidean 
kNN scan be efficiently retrieved using conventional NN search on a spatial index. 
Assuming that DB is indexed by an R*-Tree [1], the multistep kNN algorithm first 
retrieves the k Euclidean NNs of Q using an incremental algorithm (e.g., [7]). These 
points are inserted into a result set RS, and their network (DST) distances are 
computed. Let DSTmax be the network distance between Q and its current kth NN Pk. 
The next Euclidean NN P is then retrieved. As long as dst(Q,P) < DSTmax, the algorithm 
computes DST(Q, P) and compares it against DSTmax. If DST(Q,P) < DSTmax, P is 
inserted into RS, the previous Pk is expunged, and DSTmax is updated. The loop of Lines 
5-9 terminates when dst(Q,P)>= DSTmax; because of the lower bounding property of 
the Euclidean distance, any point lying further in the Euclidean space cannot be closer 
than DSTmax in the network. Independently of the application domain, the algorithm 
performs the minimum number of DST computations. Specifically, in addition to RS, the 
DST distances are computed only for false hits, i.e., the set of points FH ={P ϵ DB-RS : 
dst(Q,P) <= DST(Q,Pk)}, where Pk is the final kth NN. The rest of the records are not 
accessed at all (if they reside in pruned nodes of the R*-Tree), or they are eliminated 
using their dst to Q. 
B. High-Dimensional Similarity Search Using Multistep NN: 

Several applications including image, medical, time series, and document 
databases involve high-dimensional data. Similarity retrieval in these applications 
based on low dimensional indexes, such as the R*-Tree, is very expensive due to the 
dimensionality curse. Specifically, even for moderate dimensionality (i.e., D = 20) a 
sequential scan that computes DST(Q, P) for every P ϵ DB is usually cheaper than 
conventional NN algorithms using the index. Consequently, numerous specialized 
structures have been proposed for exact and approximate kNN search in high 
dimensions. The GEMINI framework [6], [11] follows a different approach, combining 
multistep search with a dimensionality reduction technique that exhibits the lower 
bounding property. Specifically, each record P ϵ DB is mapped to a low-dimensional 
representation p in d dimensions (d << D). The resulting d-dimensional data set db is 
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indexed by an R*-Tree, or any low-dimensional index. The query Q is also transformed 
to a d-dimensional point q and processed using a multistep method. DST (resp. dst) 
computations involve high (low) dimensional points. The index prunes most nodes and 
records using the cheap, filter (dst) distances, whereas the expensive DST computations 
are necessary only for the points in result RS and false hit set FH. GEMINI is the most 
common approach for performing similarity search over high-dimensional data, and 
especially time series. Numerous dimensionality reduction methods have been used 
extensively including Discrete Fourier Transform (DFT), Singular Value Decomposition 
(SVD), Discrete Wavelet Transform (DWT), Piecewise Linear Approximation (PLA), 
Piecewise Aggregate Approximation (PAA), Adaptive Piecewise Constant 
Approximation (APCA), and Chebyshev Polynomials (CP). Their effectiveness is 
measured by the number of records that they can prune using only the low-dimensional 
representations (i.e., it is inversely proportional to the cardinality of FH). Ding et al. [5] 
experimentally compare various techniques, concluding that their effectiveness 
depends on the data characteristics.  
C. Authenticated Query Processing: 

In authenticated query processing, a server maintains a data set DB signed by a 
trusted authority (e.g., the data owner, a notarization service). The signature sig is 
usually based on a public-key cryptosystem (e.g., RSA [16]). The server receives and 
processes queries from clients. Each query returns a result set RS _ DB that satisfies 
certain predicates. Moreover, the client must be able to establish that RS is correct, i.e., 
that it contains all records of DB that satisfy the query conditions, and that these 
records have not been modified by the server or another entity. Since sig captures the 
entire DB (including records not in the query result), in addition to RS, the server 
returns a verification object (VO). Given the VO, the client can verify RS based on sig and 
the signer’s public key. VO generation at the server is usually performed using an 
authenticated data structure (ADS). The most influential ADS is the Merkle Hash Tree 
(MH-Tree) [15], a main-memory binary tree, originally proposed for single record 
authentication. Each leaf in the MH-Tree stores the digest of a record, calculated using a 
one-way, collision-resistant hash function h(.), such as SHA-1 [16]. An inner node stores 
a digest computed on the concatenation of the digests in its children. The trusted 
authority signs the root digest 
3. Node Architecture and Protocols: 
A. Authenticated Multistep NN: 

Our work adopts the GEMINI framework because 1) it has  been proven effective 
in non authenticated similarity retrieval, especially for numerous (i.e., D > 100) 
dimensions, where even high-dimensional indexes fail 2) it can be extended to 
authenticated query processing based on a low dimensional  ADS, i.e., the MR-Tree, 
whereas, currently there are no authenticated high-dimensional structures; and 3) it is 
general, i.e., it can also be applied when the expensive distance computations are due to 
the nature of the distance definition (e.g., network distance), rather than the data 
dimensionality (in which case D = d). We assume a client-server architecture, where the 
server maintains data signed by a trusted authority. There are two versions of the 
signed data set: a D-dimensional DB and a d dimensional db (d << D), produced from DB 
using any dimensionality reduction technique that satisfies the lower bounding 
property. For instance, DB may be a set of high dimensional time series and db their 
low-dimensional representations obtained by DFT. There is a single signature sig, 
generated by a public key cryptosystem (e.g., RSA), that captures both DB and db. DST 
(dst) refers to the distance metric used in the D(d)-dimensional space. For ease of 
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illustration, we use Euclidean distance for both the DST and dst metrics. Nevertheless, 
the proposed techniques are independent of these metrics, as well as of the underlying 
dimensionality reduction technique. The proposed Authenticated Multistep NN (AMN) 
extends the multistep NN algorithm of [19] to our setting. As opposed to optimizing the 
processing cost at the server, the major objective of AMN (and any query authentication 
technique, in general) is to minimize 1) the network overhead due to the transmission 
of the VO, and 2) the verification cost at the client (which is assumed to have limited 
resources compared to the server).  
B. Communication-Efficient AMN: 

Depending on the dimensionality reduction technique, the values D, d, and k, and 
the data set characteristics, there may be numerous false hits in FH, each containing  
hundreds or thousands (i.e., D) values. Next, we propose communication-efficient AMN 
(C-AMN), which decreases the size of the false hits, significantly reducing the 
transmission and verification cost without compromising the security of AMN.  
C. False Hit Reduction Algorithm: 

Ideally, for each false hit P, Reduce FH should derive the subset SP with the 
minimum length. Intuitively, this task is at least as difficult as the Knapsack Problem; we 
need to select a subset of items (SP of P values), each assigned a cost (communication 
overhead) and a weight (distance DST(SQ, SP)), such that the sum of costs is minimized 
and the sum of weights exceeds DSTmax. An additional complication is that when we 
select one item, the cost of the rest changes (i.e., unlike knapsack, where the cost is 
fixed). 
D. AMN in Distributed Servers: 

In this setting, we assume that the database is horizontally partitioned and 
distributed over m (>1) servers. Specifically, each server Si stores a subset DBi such 
that: DB1 U..U DBm =DB and DBi ∩ DBj =Φ< i,j <m,. In addition, Si maintains an MR-Tree 
on the corresponding reduced data set dbi, which is signed by a signature sigi. A query 
result comprises the kNNs over all servers. Minimization of transmissions (of the high-
dimensional data) is particularly important for this setting, especially for large values of 
m. SD-AMN (short for simple distributed AMN), used as a benchmark in our 
experimental evaluation. Section 5.2 proposes ID-AMN (short for incremental 
distributed AMN), a more elaborate method, which quickly eliminates servers that 
cannot contribute results. 
E. Simple Distributed AMN: 

In SD-AMN, a client sends its kNN query Q to all servers. Each server Si retrieves 
the partial result RSi on the local DBi using the conventional multistep algorithm, and 
generates a vector kDSTi with the distance values of the Knn set RSi in Si. The client 
collects the vectors from the servers and determines the global kth nearest distance 
DSTmax over all m .k collected distances. Then, it transmits a range qR =(q,DSTmax). Each 
server Si executes qR using its MRTree and returns VOiR, RSi, and FHi. VOiR has the same 
meaning as in centralized processing, i.e., it is the VO of qR. RSi (resp. FHi) is a set of 
results (resp. false hits), i.e., points of dbi that fall in qR and whose high-dimensional 
representations have distance from Q smaller (resp. larger) than DSTmax. The size of FH 
can be reduced through C-AMN. 
F. Incremental Distributed AMN: 

SD-AMN is optimal in terms of high-dimensional point transmissions because the 
client receives D- imensional representations only for points in qR. All these points 
(results and false hits) are necessary to establish correctness anyway. However, it must 
transmit Q to all servers. Moreover, each server Si has to compute RSi although none of 
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the points of RSi may participate in the global result. ID-AMN avoids these problems by 
gradually eliminating servers that cannot contribute results. Specifically, ID-AMN 
incrementally retrieves distance values from servers to compute the final DSTmax, 
postponing local NN computations at the servers until they are required 
4. System Overview: 

 

 

A. Authentication Process: 

Client

Authorized  

User

 Table
Authenticated

User

If Authorized User

Perform the 

given Query
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Authenticated multistep NN search for applications that require a proof of result 
correctness. Clients issue similarity queries to a provider. The latter returns the result 
set and additional verification information, based on which the client establishes that 
the result is indeed correct, i.e., it contains exactly the records of Database that satisfy 
the query conditions, and that these records indeed originate from their legitimate data 
source. Clients issue their queries to the closest (in terms of network latency) server, 
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but they wish to be assured that the result is the same as if the queries were sent to the 
original source of Database. Authenticated query processing ensures the client that the 
received result complies with the validated Database. 

B. Identifying the False Hits Module: 

Query

if (false hits= True)

Compare with 

Available false hits

retrive Query 

information

retrives Query releated 

information

false hits 

information

Yes

No

Check for false hits

Database

 
Records that are not in the Database, but are nevertheless necessary for its 

verification. In addition to the network overhead, false hits impose a significant burden 
to the client, which has to verify them. It initializes a false hit set False Hit (FH) = 0, and 
a result set Record set (RS) ={P1 . . . . Pk}, and computes DSTmax, i.e., the DST of the 
current kth NN Pk. The goal of AMN is to return to the corresponding client the kNNs of 
Q, in a verifiable manner. 
C. Nearest Neighbor Search: 
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The server receives and processes queries from clients. Each query returns a 
result set RS_DB that satisfies certain predicates. Moreover, the client must be able to 
establish that Record Set (RS) is correct, i.e., that it contains all records of Database that 
satisfy the query conditions, and that these records have not been modified by the 
server or another entity. There may be numerous false hits in FH information, each 
containing hundreds or thousands of values. Next, we communication-efficient AMN (C-
AMN), which decreases the size of the false hits, significantly reducing the transmission 
and verification cost without compromising the security of AMN. The main concepts of 
C-AMN algorithm, for false hit reduction. 
5. Results: 
A. Single Server: 

The measures of interest are the communication overhead, and the CPU cost at 
the server and the client. We assess the communication overhead based on the 
verification information sent to the client. The transmission of the query and the result 
is omitted because it is necessary in any method. The CPU cost is measured in terms of 
the elementary distance computations. Specifically, D elementary computations are 
required to derive the Euclidean distance of two D dimensional points. We exclude the 
I/O cost at the server because it is identical for both AMN and C-AMN (and similar to 
that of the conventional multistep algorithm) since in any case, we have to retrieve the 
low-dimensional NNs using the MR-Tree. For each experiment, we select a random data 
point as the query, and report the average results over 10 queries. 
B. Distributed Servers: 

We compare SD-AMN and ID-AMN considering that the database is horizontally 
partitioned over m servers. Recall that the methods first collect distance information, 
based on which they determine the range that contains the result. The NNs and the false 
hits are obtained during the verification of this range, which is identical in SD-AMN and 
ID-AMN. Thus, when measuring the communication cost, we focus on their differences, 
which regard the transmission of query points and the distance information. The CPU 
overhead is based again on elementary distance computations. Finally, due to the 
identical verification process, the client cost is similar, and the corresponding 
experiments are omitted. 
6. Discussion and Conclusion:  

The importance of authenticated query processing increases with the amount of 
information available at sources that are untrustworthy, unreliable, or simply 
unfamiliar. This is the first work addressing authenticated similarity retrieval from such 
sources using the multistep kNN framework. We show that a direct integration of 
optimal NN search with an authenticated data structure incurs excessive 
communication overhead. Thus, we develop C-AMN, a technique that addresses the 
communication specific aspects of NN, and minimizes the transmission overhead and 
verification effort of the clients. Furthermore, this paper proposes ID-AMN, which 
retrieves distance information from distributed servers, eliminating those that cannot 
contribute results. 
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