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Abstract: 
In this chapter the concepts of b-open M-sets, b-closed M-sets and b-separated M-sets are studied. 

Also, some of their properties and characterizations are discussed.  
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1. Introduction:  
Since then the introduction of M-topological spaces by Gitish and Sunil Jacob [6], various authors [1,2 

and 6] studied the many interesting topological properties in M- topological spaces. Andrijevic [3] studied b-

open sets. EI-Atik 
 
A A et al[4]. Studied the applications of b-connectedness. In this article, the concept of b-

open M-sets, b-closed M-sets and b-separated M-sets are studied. Also, some of their properties and 

characterizations are discussed.  

2. Preliminaries:  

Definition 2.1 [6]: An M-set M drawn from the set X is represented by a function Count M or MC defined as 

WXCM : where W represents the set of whole numbers. Here is )(xCM the number of occurrences of the 

element x in the M-set M. We represent the M-set M drawn from the set  nxxxX ...., 21   as 
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1  where mi is the number of occurrences of the element xi, i = 1,2,...,n in the M-set M. 

Those elements which are not included in the M-set have zero count. Since the count of each element in an M-

set is always a non-negative integer so, W is taken as the range space instead of N.  

Definition 2.2 [6]: Let M ∈ [X]
w
 and τ ⊆ P∗(M). Then τ is called a Multiset topology of M if τ satisfies the 

following properties. 

 The M-set M and the empty M-set ϕ are in τ. 

 The M-set union of the elements of any sub collection of τ is in τ. 

 The M-set intersection of the elements of any finite sub collection of τ is in τ.  

Definition 2.3 [1]: A subset A of a Topological space (X, τ) is called a b-open set if A ⊆ cl(int(A)) ⋃ int(cl(A)). 

3. On b-Separated M-Sets:
  

Throughout this chapter X denotes a non-empty set and CM: X ⟶ W where W represents the set of 

whole numbers. 

Definition 3.1:  Let (M, τ) be an M-topological space. Any sub M-set A  of  M  is  said   to   be   a      b-open  

M-set if   int(cl(A))cl(int(A))A  with  CA(x)  ≤ Ccl(int(A))⋃int(cl(A))(x), for all  Xx . The collection of all b-

open M-sets   in (M, τ) is denoted BO(M).  The complement of a b-open M-set is a b-closed M-set.  

Example 3.1: Let  X  =  {  a, b, c  },  w  =  2   and   M  =   {  1/a, 1/b, 2/c  }. Let  τ  =  {M,  ϕ, { 1/a }, {1/b}, 

{1/a, 1/b}}. Then τ is an   M-topology and (M, τ) is an M-topological space.  Also τ
c
  = {ϕ, M, {1/a, 2/c}, {1/b, 

2/c}, {2/c}}. Let A = {1/a}. Clearly,   int(cl(A))cl(int(A))A and CA(x) Ccl(int(A))⋃int(cl(A))(x), for all  

Xx . Hence   A = {1/a} is a b-open M-set. 

Example 3.2: Let  X  =  { a, b, c },   w = 2   and   M =  {1/a, 2/b, 1/c }.  Then  τ is  an   M-topology  and (M, τ) 

is  an  M-topological  space.  Also τ
c
  = {ϕ,  M,  {2/b, 1/c}, {1/a,  2/b },  {2 /b}} . Let   A = {1/a, 1/b}. 

Clearly, A   cl(int(A))int(cl(A))   and Cint(cl(A))⋂cl(int(A))(x) CA(x),  for  all Xx  . Hence    A= {1/a, 1/b}  is   

a  b-closed  M-set.      

Definition 3.2: Let (M, τ)  be  an  M-topological  space  and  A  be  any  sub  M-set  of   M.  The  b-closure   of   

A and b-interior  of  A  respectively   denoted   and   defined   by  bcl(A) = ∩ {B :  B ⊇ A,  each  B ⊆ M is a b-

open M-set} with Cbcl(A) (x)  = min { CB(x) : B ⊇ A  each  B  ⊆  M  is  a b-open  M-set},  for  all  Xx . 

bint(A) = ⋃ {B: B ⊆ A,  each B ⊆ M   is   a b-closed  M-set  }  with  Cbint(A) (x)  =  max {CB(x) :  B ⊆ A   each  

B ⊆ M  is  a b-closed M-set }, for  all Xx . 
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Example 3.3: Let   X   =  {  a,  b, c  },   w  =  2   and   M  =  {  1/a,  2/b,  1/c  }. Then  τ is  an   M-topology  and 

(M, τ) is  an  M-topological  space.  Also τ
c
 = {  ϕ,  M,  { 1/a, 2/b }, { 2/b, 1/c },  { 2/b } }. The collection  of  all  

b-open  M-sets  is {  {  M,  ϕ,  { 2/b, 1/c },  { 1/a, 2/b },  { 1/b, 1/c }, { 1/c }, { 1/a, 1/b }, { 1/a } }. Let  A  =  { 

1/b }  be  a  sub M-set  of  M.  Then bint(A)  = ϕ  with Cbint(A)(x)  =  max { CB(x) : B  ⊆  A  each  B  ⊆  M  is  a  

b-open M-set }, for  all  Xx . The  collection  of  all  b-closed M-sets is  {  ϕ, M, { 1/a },  { 1/c },  { 1/a, 1/b 

},  {1/a, 2/b },  { 1/b, 1/c }, { 2/b, 1/c } }.  Let  A = { 1/a, 2/b }  be  a  sub M-set  of  M. Then bcl(A) = { 1/a, 2/b 

}  with  Cbcl(A)(x)  =  min  { CB(x)  :  B  ⊇  A   each   B  ⊆  M   is  a b-closed   M-set },  for all Xx . 

Definition 3.3: Any  M-topological  space (M, τ) is  said  to  be  a  b-connected  M-space  if  M  cannot  be  

expressed  as  the  union   of  two   disjoint nonempty  b-open M-sets  of  M. 

Definition 3.4: Let (M, τ) be  an  M-topological space.  Any   sub  M-set A ⊆  M is   called   a    b-

neighborhood  M-set   of    a   point  Mx m  if    there  exists   a  b-open   M-set  U  ⊆  A   such   that   

AUx m     with   C{ m/x }   CU(x)  
  CA(x),  for  all  Xx .  

Definition 3.5: Let (M, τ) be   an  M-topological  space.  Two  sub M-sets A and B of  M  are said to  b-

separated  M-set  if  and  only  if  A ∩ bcl(B) = ϕ with  CA⋂bcl(B)(x)  =  0  and   bcl(A) ∩ B  =  ϕ   with   

Cbcl(A)⋂B(x) = 0 , for all   Xx .   

Example 3.4: Let X  =  {  a, b, c  },  w   =  2   and   M  =  {  1/a, 1/b, 2/c  }.  Let  τ = {  M,  ϕ,  { 1/a },  { 1/b },  

{ 1/a, 1/b } }. Then  τ  is  an  M-topology and  (M, τ) is  an M-topological space. Also τ
c
 =  {  ϕ,  M, { 1/a, 2/c },  

{ 1/b, 2/c }, { 2/c }  }. The  collection  of   all   b-open  M-sets  is   {  {  1/a  }, {  1/b  }, { 1/a,  1/b  },  {  1/a,  

1/c  }, {  1/a,  2/c }, { 1/b, 1/c }, { 1/b, 2/c },  { 1/a, 1/b, 1/c } }.Hence  the  collection  of   all   b-closed  M-sets  

is  { {   M,   ϕ,  { 1/b, 2/c },  { 1/a, 2/c },  { 2/c },  { 1/b, 1/c },  { 1/b },  { 1/a, 1/c }, { 1/a } }.  Let  A   =   { 1/a 

}   and   B   =   { 2/c }.  Then,  bcl(B) = { 2/c }  with Cbcl(B)(a) = 0, Cbcl(B)(b) = 0, Cbcl(B)(c) = 2. Therefore,A ∩ 

bcl(B) = { 1/a } ⋂ { 2/c } =  ϕ with CA⋂bcl(B)(a) = 0, CA⋂bcl(B)(b) = 0, CA⋂bcl(B)(c) = 0. Then   bcl(A)   =   { 1/a }   

with   Cbcl(A)(a)  = 1,  Cbcl(A)(b) = 0, Cbcl(A)(c) = 0  and  B = { 2/c }.  But bcl(A) ⋂ B  =  { 1/a } ⋂    { 2/c }  =  ϕ 

with  Cbcl(A)⋂B(a) = 0, Cbcl(A)⋂B(b) = 0, Cbcl(A)⋂B(c) = 0. Hence, A  and  B  are b-Separated M-sets. 

Proposition 3.1: Let (M, τ) be  an  M-topological  space  and  A  and  B  be   any  two nonempty sub M-sets of 

M. Then the following statements hold:                                           

 For   any   two  sub  M-sets   A1  and  B1  of   M,  if  A  and  B  are b-Separated  M-sets   such  that   A1  

⊆  A   with   CA1(x)      CA(x), for   all   Xx and   B1  ⊆   B   with   CB1(x)      CB(x),  for  all   

Xx .   Then  A1  and  B1   are   also  b-separeted M-sets.  

 If   each   of   A   and  B  are   both    b-closed   M-sets   and b-open   M-sets   such   that, A ⋂ B   =  ϕ  

with  CA⋂B(x)  = 0,  for  all  Xx ,  then A and B are b–separated M-sets.        

 If   each  of   A  and   B   are   both   b-closed  M-sets   and  b-open       M-sets  and   if  H  = A ⋂ (M ⊖ 

B)  with  CH (x)  =  CA⋂(M ⊖ B)(x), for  all  Xx and       G = B ⋂ (M ⊖ A)  with  CG(x) = CB⋂(M ⊖ 

B)(x),  for  all  Xx ,  then  H   and   G   are  b–separated M- sets. 

Proposition 3.2: Let (M, τ) be  an M-topological  space. The   sub  M-sets  A and  B  of   M  are  b–separated  

M-sets  if  and  only   if  there  exist  U and  V   in  BO(M)  such  that  A  ⊆  U  with  CA (x)     CU(x),  for all   

Xx ,   B  ⊆ V  with  CB(x)      CV(x),  for  all  Xx   and  A ⋂ V  = ϕ   with  CA⋂V(x) = 0,  for  all   

Xx ,  B ⋂ U   =  ϕ   with   CB⋂U(x) = 0,  for  all   Xx . 

Definition 3.6: Let (M, τ) be an M-topological  space. Let  A  be  any  sub  M-set of   M.  A  point  Mx m  is  

called  a   b-limit  point  of   A  if  every  b-open   M-set U ⊆ M  with  CU(x) < CM(x)  containing   m/x   contains 

a  point  of  A other  than m/x.   

Proposition 3.3: Let (M, τ) be   an  M-topological  space. Let   A  and  B  be  any two   nonempty  disjoint   sub 

M-sets   of   M   and   E  =  A⋃B   with CE(x)  =  CA⋃B(x),  for  all Xx .  Then  A   and  B  are  b-separated  

M-set  if  and  only   if   each  of  A  and  B  is   nb-closed  M-set  (b-open M-set)  in  E. 

Definition 3.7: Let (M, τ) be  an M–topological  space  and  A  and   B   be  any two  sub M-sets.  Any  sub M-

set  S of  M  is  said  to  be b-connected  relative  to  M  if  there  do not  exist  two  b-separated  sub M-sets  A 

and B  relative  to  M  and  S = A ⋃ B  with CS(x)  =  CA⋃B(x),  for  all  Xx .  Otherwise, S  is  said  to  be  a  

b-disconnected M-set. 

Proposition 3.4: Let (M, τ) be  an M-topological  space. Let E be any sub M-set of M.  If  E  is  a  b-connected 

M-set, then bcl(E)  is  a b-connected M-set. 

Proposition 3.5: Let  (M, τ) be   an  M-topological  space.  Let  A  ⊆  B ⋃ C  with  CA(x)    CB ⋃ C (x)  such 

that  A  is  a  nonempty   b-connected  M-set in   (M, τ) and  B,  C  are  b–separated  M-sets. Then   only   one   

of   the following   conditions holds 

 A ⊆ B and A⋂C = ϕ   with CA(x)   CB(x)   and  CA⋂C(x) = 0, for  all  Xx . 

 A ⊆ C and A⋂B = ϕ   with CA(x)    CC(x)   and  CA⋂B(x)= 0, for  all  Xx . 
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Definition 3.8: 

           Let (M, τ1) and (N, τ2) be any two M-topological spaces. Then any M-set function f : (M, τ1)   (M, τ1) 

is  said to be a    

 b-continuous  M-set function  if  for each  b-open sub M-set  V of N, the  M-set     f
 -1 

(V) is a b-open 

sub M-set of (M, τ1) 

 b-open M-set  if  the  image of  each open M-set  in  (M, τ1) is  a  b-open M-set in (N, τ2) 

 b-closed M-set  if  the image  of each closed M-set in (M, τ1) is  a b-closed M-set in (N, τ2). 

Proposition 3.6: Let (M, τ1) and   (N, τ2) be   any   two   M-topological spaces. Let f :  (M, τ1)   (N, τ2) be   a  

b-continuous M-set function. Then  ))(())(( 11 BclfBfbcl    with  Cbcl (f
 -1

 (B) )      C f
 -1

(cl(B)),  for   all Xx for  

each  B  Y  with CB(x)   CY(x),  for   all  Xx . 

Proposition 3.7: Let (M, τ1) and   (N, τ2) be   any   two   M-topological spaces. Let f :  (M, τ1)   (N, τ2) be   a  

b-continuous   M-set   function.  and  if   K  is b-connected  M-set in (M, τ1) then f(K)  is a connected  M-set in 

(N, τ2). 
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