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Abstract:

In this chapter the concepts of b-open M-sets, b-closed M-sets and b-separated M-sets are studied.
Also, some of their properties and characterizations are discussed.
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1. Introduction:

Since then the introduction of M-topological spaces by Gitish and Sunil Jacob [6], various authors [1,2
and 6] studied the many interesting topological properties in M- topological spaces. Andrijevic [3] studied b-
open sets. EI-Atik A A et al[4]. Studied the applications of b-connectedness. In this article, the concept of b-
open M-sets, b-closed M-sets and b-separated M-sets are studied. Also, some of their properties and
characterizations are discussed.
2. Preliminaries:

Definition 2.1 [6]: An M-set M drawn from the set X is represented by a function Count M or C,, defined as

Cy - X =W where W represents the set of whole numbers. Here is C,, (X) the number of occurrences of the
element x in the M-set M. We represent the M-set M drawn from the setX :{xl,xz....xn} as

X% X

Those elements which are not included in the M-set have zero count. Since the count of each element in an M-
set is always a non-negative integer so, W is taken as the range space instead of N.
Definition 2.2 [6]: Let M € [X]" and t € P*(M). Then 7 is called a Multiset topology of M if t satisfies the
following properties.

v' The M-set M and the empty M-set ¢ are in 1.

v' The M-set union of the elements of any sub collection of T is in t.

v' The M-set intersection of the elements of any finite sub collection of T is in 1.
Definition 2.3 [1]: A subset A of a Topological space (X, t) is called a b-open set if A < cl(int(A)) U int(cl(A)).
3. On b-Separated M-Sets:

Throughout this chapter X denotes a non-empty set and Cy: X — W where W represents the set of

whole numbers.
Definition 3.1: Let (M, 1) be an M-topological space. Any sub M-set A of M is said to be a  b-open
M-set if Accl(int(A) Uint(cl(a) With Ca(x) < Cegnayuineiay(X), for all X e X . The collection of all b-
open M-sets in (M, 1) is denoted BO(M). The complement of a b-open M-set is a b-closed M-set.
Example 3.1: Let X = { a,b,c }, w =2 and M = { 1/a 1/b, 2/c }. Let © = {M, ¢, {1/a}, {1/b},
{1/a, 1/b}}. Then T is an M-topology and (M, ) is an M-topological space. Also t° = {¢, M, {1/a, 2/c}, {1/b,
2/0}, {Z/C}} Let A = {1/&} Clearly, Agcl(lnt(A)) UInt(Cl(A)) and CA(X) < Ccl(int(A))Uint(cI(A))(X): for all
X e X .Hence A ={1/a}isab-open M-set.
Example 3.2: Let X = {a,b,c}, w=2 and M= {l/a 2/b, l/c}. Then tis an M-topology and (M, 1)
is an M-topological space. Also ©° = {¢, M, {2/b, 1/c}, {1/a, 2/b '}, {2 /b}} . Let A = {l/a, 1/b}.
Clearly, |nt(cI(A))ﬂcI(|nt(A)) cA and Cint(cI(A))ﬂcI(int(A))(X) < CA(X), for all Xe X .Hence A= {1/3., 1/b} is
a b-closed M-set.
Definition 3.2: Let (M, 1) be an M-topological space and A be any sub M-set of M. The b-closure of
A and b-interior of A respectively denoted and defined by bcl(A)=N {B: B2 A, each B< Misab-
open M-set} with Cpeay (X) = min { Cg(X) : B2 A each B € M is ab-open M-set}, for all Xe X .
bint(A) =U {B:BS A, eachBS M is ab-closed M-set } with Cpingay(X) = max {Cg(X) : B S A each
B <M is ab-closed M-set }, for all Xe X .

M :{ml m, mn} where m; is the number of occurrences of the element x;, i = 1,2,...,n in the M-set M.
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Example 3.3: Let X ={a b,c} w=2 and M = { 1/a, 2/b, 1/c }. Then tis an M-topology and

(M, 1) is an M-topological space. Alsot°=1{ ¢, M, {1/a,2/b}, { 2/b, 1/c}, {2/b} }. The collection of all

b-open M-sets is { { M, ¢, {2/b,1/c}, {1/a,2/b}, {1/b,1l/c}, {l/c}, {l/a,1/b}, {1/a}}.Let A = {

1/b} be a sub M-set of M. Then bint(A) =¢ with Cphinyay(X) = max {Cg(X):B S A each B &€ M is a

b-open M-set }, for all X € X . The collection of all b-closed M-setsis { ¢, M, { 1/a}, {1/c}, {1/a, /b

}. {la 20}, {1b,1/c} {2/b,1/c}}. Let A={1/a,2/b} be a sub M-set of M. Then bcl(A) = { 1/a, 2/b
} with Chea(X) = min {Cg(x) : B 2 A each B € M is ab-closed M-set}, forall Xe X .

Definition 3.3: Any M-topological space (M, 1) is said to be a b-connected M-space if M cannot be

expressed as the union of two disjoint nonempty b-open M-sets of M.
Definition 3.4: Let (M, t) be an M-topological space. Any sub M-set Ac Mis called a b-

neighborhood M-set of a point X" M if there exists a b-open M-set U € A such that

XEm U c A with C{m/x} < CU(x) < CA(x), for all xe X.
Definition 3.5: Let (M, 1) be an M-topological space. Two sub M-sets A and B of M are said to b-
separated M-set if and only if A N bcl(B) = ¢ with Canpag)(X) = 0 and bcl(A) N B = ¢  with
CbcI(A)ﬂB(X) =0, forall Xe X.
Example3.4: LetX = { a,b,c }, w =2 and M = { l/a, 1/b,2/c }. Let t={ M, ¢, {1/a}, {1/b},
{1/a,1/b} }. Then t is an M-topology and (M, 1) is an M-topological space. Also = { ¢, M, { 1/a,2/c },
{1/b,2/c} {2/c} } The collection of all b-open M-sets is { { 1/a }, { 1/b }, {1/a, 1/b }, { 1/a,
lc },{ la, 2/c} {1/b,1ic} {1/b,2/c}, {1la 1/b,1/c} }.Hence the collection of all b-closed M-sets
is {{ M, o, {1/b,2/c}, {1/a,2/c}, {2/c}, {1/b,1/c}, {1/b}, {1/a,l/c}, {1/a}}. Let A = {1/a
} and B = { 2/c } Then, bCI(B) = { 2lc } with de(B)(a) =0, CbCI(B)(b) =0, CbcI(B)(C) = 2. Therefore,A N
bel(B) ={Ya} N{2c}= ¢ with Cannue)(@) = 0, Cannie)(b) = 0, Canvaig)(c) = 0. Then bel(A) = {1/a}
with de(A)(a) =1, CbcI(A)(b) =0, de(A)(C) =0 and B= { 2/c } But bCl(A) nB = { 1/3.} n { 2/c } = ¢
with Cyaane(@) = 0, Coaaynas(b) = 0, Cueayne(c) = 0. Hence, A and B are b-Separated M-sets.
Proposition 3.1: Let (M, 1) be an M-topological space and A and B be any two nonempty sub M-sets of
M. Then the following statements hold:

v' For any two sub M-sets A; and B; of M, if A and B are b-Separated M-sets such that A;

C A with Ca(X) S Ca(x),for all XeXand B; € B with Cg(x) S Cg(x), for all
Xe X . Then A, and B; are also b-separeted M-sets.
v If each of A and B are both b-closed M-sets and b-open M-sets such that, ANB = ¢
with Cang(X) =0, for all X & X, then A and B are b—separated M-sets.
v If each of A and B are both b-closed M-sets and b-open M-sets and if H=ANMBE
B) with Cy(X) = Canm e s)(X), for all X e X and G=BNM®O A) with Cs(x)=Cgnmoe
g(x), for all Xe X, then H and G are b-separated M- sets.
Proposition 3.2: Let (M, 1) be an M-topological space. The sub M-sets Aand B of M are b—separated
M-sets if and only if there exist Uand V in BO(M) such that A © U with Ca(x) < Cy(x), forall
Xe X, B €V with Cg(x) < Cy(x), for all Xe X and ANV =¢ with Canv(x) =0, for all
XeX,BNU = ¢ with Cgny(x)=0, for all Xe X.

Definition 3.6: Let (M, 1) be an M-topological space. Let A be any sub M-setof M. A point X" M is
called a b-limit point of A if every b-open M-setU € M with Cy(x) < Cy(X) containing m/x contains
a point of A other than m/x.
Proposition 3.3: Let (M, 1) be an M-topological space. Let A and B be anytwo nonempty disjoint sub
M-sets of M and E = AUB with Cg(x) = Caug(x), for all Xe X . Then A and B are b-separated
M-set if and only if each of A and B is nb-closed M-set (b-open M-set) in E.
Definition 3.7: Let (M, 1) be an M—topological space and A and B be anytwo sub M-sets. Any sub M-
set Sof M is said to be b-connected relative to M if there do not exist two b-separated sub M-sets A
and B relative to M and S=A U B with Cg(x) = Caus(X), for all X € X . Otherwise, S is said to be a
b-disconnected M-set.
Proposition 3.4: Let (M, 1) be an M-topological space. Let E be any sub M-set of M. If E is a b-connected
M-set, then bcl(E) is a b-connected M-set.
Proposition 3.5: Let (M, 1) be an M-topological space. Let A € B U C with Ca(X) < Cguc (X) such
that A is a nonempty b-connected M-setin (M, 1) and B, C are b-separated M-sets. Then only one
of the following conditions holds

v ACBand ANC=¢ with CA(X) = Cg(x) and Canc(X) =0, for all xe X .

v AcCand ANB=¢ with Ca(x) < Cc(x) and Cang(X)=0, for all Xe X .
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Definition 3.8:
Let (M, 1) and (N, 1) be any two M-topological spaces. Then any M-set function f: (M, 11) — (M, 11)
is said to be a
v" b-continuous M-set function if for each b-open sub M-set V of N, the M-set  f™ (V) is a b-open
sub M-set of (M, 1,)
v' b-open M-set if the image of each open M-set in (M, 1;) is a b-open M-set in (N, 1,)
v' b-closed M-set if the image of each closed M-set in (M, 1) is a b-closed M-set in (N, 1,).
Proposition 3.6: Let (M, t;) and (N, 1,) be any two M-topological spaces. Let f: (M, 1) — (N, 1,) be a
b-continuous M-set function. Then bel(f *(B)) < f (cl(B)) With Co¢ ' @) < Ct @iy, for all X € X for

each B Y with Cg(x) = Cy(x), for all Xxe X .
Proposition 3.7: Let (M, t;) and (N, 1,) be any two M-topological spaces. Letf: (M, 1) — (N, 1,) be a
b-continuous M-set function. and if K is b-connected M-set in (M, 1) then f(K) is a connected M-set in
(N, 12).
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